[4] Pablo Martinez-Azcona, Aritra Kundu, Avadh Saxena, Adolfo del Campo, Aurélia Chenu
Quantum Dynamics with Stochastic Non-Hermitian Hamiltonians
https://arxiv.org/abs/2407.07746
[3] Niklas Hörnedal, Oskar A. Prośniak, Adolfo del Campo, Aurélia Chenu
A geometrical description of non-Hermitian dynamics: speed limits in finite rank density operators
https://arxiv.org/abs/2405.13913
[2] Ruth Shir*, Pablo Martinez-Azcona*, Aurélia Chenu. ArXiv 2311.09292 Full range spectral correlations and their spectral form factors in chaotic and integrable models
https://arxiv.org/abs/2311.09292
[1] A. Chenu, A.M. Branczyk, and J.E. Sipe. Thermal States and Wave Packets. ArXiv:1609.00014.
[41] Federico Roccati*, Federico Balducci*, Ruth Shir*, Aurélia Chenu. Phys. Rev. B 109:L140201 (2024)
Diagnosing non-Hermitian Many-body Localization and Quantum Chaos via Singular Value Decomposition
https://doi.org/10.1103/PhysRevB.109.L140201
[40] Federico Roccati, Miguel Bello, Zongping Gong, Masahito Ueda, Francesco Ciccarello, Aurélia Chenu, Angelo Carollo. Nat. Comm. 15:2400 (2024)
Hermitian and Non-Hermitian Topology from Photon-Mediated Interactions
https://doi.org/10.1038/s41467-024-46471-w
[39] Pablo Martinez-Azcona ↵, Aritra Kundu ↵, Adolfo del Campo ↵, Aurelia Chenu ↵. Phys. Rev. Letters 131:160202 (2023)
Stochastic Operator Variance: An Observable to Diagnose Noise and Scrambling
https://doi.org/10.1103/PhysRevLett.131.160202 ↵
[38] A. S. Matsoukas-Roubeas ↵, F. Roccati ↵, J. Cornelius ↵, Z. Xu ↵, A. Chenu ↵, and A. del Campo ↵. J. of High Energy Phys., JHEP01:060 (2023)
Non-Hermitian Hamiltonian Deformations in Quantum Mechanics
https://arxiv.org/abs/2211.05437 ↵
[37] P. Martinez-Azcona and A. Chenu. Quantum 6, 852 (2022).
Analyticity constraints bound the decay of the spectral form factor.
https://quantum-journal.org/papers/q-2022-11-03-852/ ↵
[36] J. Cornelius, Z. Xu, A. Saxena, A. Chenu, A. del Campo. Phys. Rev. Letters 128:190402 (2022)
Spectral Filtering Induced by Non-Hermitian Evolution with Balanced Gain and Loss: Enhancing Quantum Chaos
https://doi.org/10.1103/PhysRevLett.128.190402 ↵
[35] S. Alipour, A. T. Rezakhani, A. Chenu, A. del Campo, and T. Ala-Nissila. Phys. Rev. A, 105:L040201 (2022)
Entropy-based formulation of thermodynamics in arbitrary quantum evolution
https://arxiv.org/abs/1912.01939 ↵
[34] A. Chenu, S.-Y. Shiau, C.-H. Chien, M. Combescot. Phys. Rev. B 105:035301 (2022)
From hybrid polariton to dipolariton using non-hermitian Hamiltonians to handle particle lifetimes
https://arxiv.org/abs/2112.08779 ↵
[33] A. Juan-Delgado and A. Chenu. Phys. Rev. A 104:022219 (2021).
First Law of Quantum Thermodynamics in a Driven Open Two-Level System.
https://arxiv.org/abs/2104.10691 ↵
[32] L. Dupays and A. Chenu. Quantum 5, 449 (2021).
Shortcuts to Squeezed Thermal states.
https://quantum-journal.org/papers/q-2021-05-01-449/ ↵
[31] Z. Xu, A. Chenu, T. Prosen, and A. del Campo. Phys. Rev. B 103:064309 (2021).
Thermofield Dynamics: Quantum Chaos versus Decoherence.
https://arxiv.org/abs/2008.06444 ↵
[30] L. Dupays, I. Egusquiza, A. del Campo, and A. Chenu. Phys. Rev. Res. 2:033178 (2020).
Superadiabatic thermalization of a quantum oscillator by engineered dephasing.
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033178 ↵
[29] S. Alipour∗, A. Chenu*, A. T. Rezakhani, and A. del Campo. Quantum 4:336 (2020).
Shortcuts to Adiabaticity in Driven Open Quantum Systems: Balanced Gain and Loss and Non-Markovian Evolution.
https://quantum-journal.org/papers/q-2020-09-28-336/ ↵
[28] A. L. Tong, O. C. Fiebig, M. Nairat, D. Harris, M. Giansily, A. Chenu, J. N. Sturgis, and G. S. Schlau-Cohen. The J. of Phys. Chem. B 124:1460 (2020).
Comparison of the Energy Transfer Rates in Structural and Spectral Variants of the B800-850 Complex of Purple Bacteria.
https://doi.org/10.1021/acs.jpcb.9b11899 ↵
[27] A. Chenu, J. Molina-Vilaplana, and A. del Campo, 2019. Quantum 3:127.
Work Statistics, Loschmidt Echo and Information Scrambling in Chaotic Quantum Systems.
https://quantum-journal.org/papers/q-2019-03-04-127/ ↵
[26] S.-Y. Shiau, A. Chenu, and M. Combescot, 2019. New J. of Phys. 21:043041
Composite-boson signature of atomic dimers in the interference pattern of two condensates.
https://iopscience-iop-org.libproxy.mit.edu/article/10.1088/1367-2630/ab0cc6 ↵
[25] Z. Xu, L. P. García-Pintos, A. Chenu, A. del Campo, 2019. Phys. Rev. Lett. 122:014103.
Extreme decoherence and quantum chaos.
https://arxiv.org/abs/1810.02319 ↵
[24] A. Chenu, S.-Y. Shiau, and M. Combescot, 2019. Phys. Rev. B 99:014302.
Two-level system coupled to phonons: full analytical solution.
https://arxiv.org/abs/1812.09043 ↵
[23] P. Diao, S. Deng, F. Li, S. Yu, A. Chenu, A. del Campo, and H. Wu, 2018. New J. of Phys. 20:1005004.
Shortcuts to adiabaticity in Fermi gases.
https://iopscience-iop-org.libproxy.mit.edu/article/10.1088/1367-2630/aae45e ↵
[22] A. Chenu, I. L. Egusquiza, J. Molina-Vilaplana, and A. del Campo, 2018. Sci. Rep. 8:12634.
Quantum work statistics, Loschmidt echo and information scrambling.
https://www-nature-com.libproxy.mit.edu/articles/s41598-018-30982-w ↵
[21] S. Deng, A. Chenu, P. Diao, F. Li, S. Yu, I. Coulamy, A. del Campo, and H. Wu, 2018. Science Advances 4:eaar5909.
Superadiabatic quantum friction suppression in finite-time thermodynamics.
https://www.science.org/doi/10.1126/sciadv.aar5909 ↵
[20] B. Shanahan, A. Chenu, N. Margolus, and A. del Campo, 2018. Phys. Rev. Lett. 120:070401.
Quantum Speed Limits Across the Quantum-to-Classical Transition.
https://arxiv.org/abs/1710.07335 ↵
[19] J. I. Ogren, A. L. Tong, S. C. Gordon, A. Chenu , Y. Lu, R. E. Blankenship, J. Cao, and G. S. Schlau-Cohen, 2018. Chemical Science 9:3095.
Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2.
http://dx.doi.org/10.1039/C7SC04814A ↵
[18] A. Chenu and M. Combescot, 2017. Phys. Rev. A 95:062124.
Many-body formalism for thermally-excited wave-packets: a way to connect quantum to classical regime.
https://arxiv.org/abs/1703.03828 ↵
[17] A. Chenu, M. Beau, J. Cao, and A. del Campo, 2017. Phys. Rev. Lett. 118:140403.
Quantum Simulation of Generic Many-Body Open System Dynamics using Classical Noise.
https://arxiv.org/abs/1608.01317 ↵
[16] A. Chenu and J. Cao, 2017. Phys. Rev. Lett. 118:013001.
Construction of Multi-Chromophoric Spectra from Monomer Data: Applications to Resonant Energy Transfer.
https://arxiv.org/abs/1608.06943 ↵
[15] A. Chenu, N. Keren, Y. Paltiel, R. Nevo, Z. Reich, J. Cao, 2017. J. Phys. Chem. B 121:9196.
Light Adaptation in Phycobilisome antennas: Influence on the Rod Length and Structural Arrangement.
http://dx.doi.org/10.1021/acs.jpcb.7b07781 ↵
[14] A.M. Branczyk, A. Chenu, and J.E.Sipe, 2017. J. Opt. Soc. Am. B34:1536.
Thermal Light as a Mixture of Sets of Pulses.
https://arxiv.org/abs/1605.06518 ↵
[13] A. Chenu and P. Brumer, 2016. J. Chem. Phys. 114:044103.
Transform-Limited-Pulse Representation of Excitation with Natural Incoherent Light.
https://arxiv.org/abs/1503.05557 ↵
[12] A. Chenu, A. M. Branczyk, G.D. Scholes, and J. E. Sipe, 2015. Phys. Rev. Lett. 114:213601.
Thermal Light cannot be represented as a Statistical Mixture of Single Pulses.
https://arxiv.org/abs/1409.1926 ↵
[11] A. Chenu, A.M. Branczyk, and J.E. Sipe, 2015.Phys. Rev. A91:063813.
First-order Decomposition of Thermal Light in terms of a Statistical Mixture of Single Pulses.
https://arxiv.org/abs/1412.0017 ↵
[10] A. Chenu and G. D. Scholes, 2015. Annu. Rev. Phys. Chem. 66:69.
Coherence in Energy Transfer and Photosynthesis.
http://dx.doi.org/10.1146/annurev-physchem-040214-121713 ↵
[9] A. Chenu, P. Malý, and T. Mancal, 2014. Chem. Phys. 439:100.
Dynamic Coherence in Excitonic Molecular Complexes under Various Excitation Conditions.
https://arxiv.org/abs/1306.1693 ↵
[8] A. Chenu, N. Christensson, H. F. Kauffmann, and T. Mancal, 2013. Sci. Rep. 3:2029.
Enhancement of Vibronic and Ground-State Vibrational Coherences in 2D Spectra of Photo- synthetic Complexes.
https://www-nature-com.libproxy.mit.edu/articles/srep02029 ↵
[7] K. Sun, A. Chenu, J. Krepel, K. Mikityuk, and R. Chawla, 2013. Nucl. Technology 183:484 - 503.
Coupled 3-D Neutronics/thermal-hydraulics optimization study for improving the response of a 3600 MWth SFR core to an unprotected loss-of-flow accident.
[6] D. Tenchine et al., 2013. Nucl. Eng. Des. 258:189-198.
International benchmark on the natural convection test in Phenix reactor. [5] A. Chenu, R. Adams, K. Mikityuk, and R. Chawla, 2012. Ann. Nucl. Energy 49:182-190.
Analysis of selected Phenix EOL tests with the FAST code system – Part I: Control-Rod-Shift experiments.
[4] A. Chenu, K. Mikityuk, and R. Chawla, 2012. Ann. Nucl. Energy 49:191-199.
Analysis of selected Phenix EOL tests with the FAST code system – Part II: Unprotected phase of the Natural Convection test.
[3] A. Chenu, K. Mikityuk, and R. Chawla, 2011. Nucl. Eng. Des. 241:3893-3909.
Pressure drop modeling and comparisons with experiments for single- and two-phase sodium flow.
[2] K. Mikityuk, J. Krepel, S. Pelloni, A. Chenu, P. Petkevich, and R. Chawla, 2010. J. of Eng. for Gas Turbines and Power 132:102915.
FAST code system: review and recent developments and near-future plans.
[1] A. Chenu, K. Mikityuk, and R. Chawla, 2009. Nucl. Eng. Des. 239:2417-2429.
TRACE simulation of sodium boiling in pin bundle experiments under loss-of-flow conditions.
[1] A. del Campo, A. Chenu, S. Deng, and H. Wu, 2019. Friction-free quantum machines in Thermodynamics in the quantum regime - Recent Progress and Outloo, Springer Int. Pub., eds.: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso
https://arxiv.org/abs/1804.00604 ↵
K. Mikityuk, A. Chenu and K. Sun, 2012. European patent No 11196149.2-2208.
https://patents.google.com/patent/EP2610875A1/en ↵
[1] A. Chenu, 2011.
Single- and Two-Phase Flow Modeling for Coupled Neutronics/Thermal-Hydraulics Transient Analysis of Advanced Sodium-Cooled Fast Reactors, EPFL PhD thesis, no 5172.
https://infoscience.epfl.ch/record/168639?ln=en ↵
[P10] K. Sun, A. Chenu, K. Mikityuk, J. Krepel, R. Chawla, 2012. An Optimization Study for Im- proving the Safety Characteristics of a 3600 MWth Sodium-cooled Fast Reactor via Coupled Neutronics / Thermal-Hydraulics Analysis, 21st International Conference Nuclear Energy for New Europe, Nominated best paper of the ENEN 6th PhD Event, Ljubljana, Slovenia.
[P9] A. Chenu, K. Mikityuk, R. Chawla, 2012. Analysis of Phenix Natural Convection Test with the TRACE Code, 12th Int. Congress on Advances in Nuclear Power Plants (ICAPP-12), Paper 12444, Chicago, Illinois, USA.
[P8] K. Sun, A. Chenu, K. Mikityuk, J. Krepel, R. Chawla, 2012. Coupled 3D-Neutronics / Thermal-Hydraulics Analysis of an Unprotected Loss-of-Flow Accident for a 3600 MWth SFR Core. Advances in Reactor Physics (PHYSOR 2012), Knoxville, Tennessee, USA.
[P7] A. Chenu, K. Mikityuk, R. Adams, R. Chawla, 2011. Analysis of Phenix Core Response to Inlet Sodium Temperature Increase During One of the EOL Tests, 14th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14), N14P443, Toronto, Canada.
[P6] A. Chenu, K. Mikityuk, R. Chawla, 2011. TRACE analysis of selected ISPRA experiments on dryout in sodium two-phase flow, 11th Int. Congress on Advances in Nuclear Power Plants (ICAPP-11), Paper 11289, Nice, France.
[P5] A. Chenu, K. Mikityuk, R. Chawla, 2010. Modelling of sodium boiling for coupled neutronic / thermal-hydraulic transient analysis of the Gen-IV SFR, European Nuclear Conference (ENC), Nominated best paper of the ENEN PhD Event, Barcelona, Spain.
[P4] A. Chenu, K. Mikityuk, R. Chawla, 2010. A Coupled 3D Neutron Kinetics / Thermal-Hydraulics Model of the Generation IV Sodium-Cooled Fast Reactor, 10th Int. Congress on Advances in Nuclear Power Plants (ICAPP-10), Paper 10281, San Diego, California, USA.
[P3] A. Chenu, K. Mikityuk, R. Chawla, 2010. Modeling of Friction Pressure Drop for Sodium Two-Phase Flow in Round Tubes, 10th Int. Congress on Advances in Nuclear Power Plants (ICAPP-10), Paper 10282, San Diego, California, USA.
[P2] A. Chenu, K. Mikityuk, R. Chawla, 2009. One- and Two- dimensional Simulations of Sodium Boiling under Loss-of-flow Conditions in a Pin Bundle with the TRACE Code, 13th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13), N13P1108, Kanazawa, Japan.
[P1] A. Chenu, K. Mikityuk, R. Chawla, 2009. Modeling of Sodium Two-phase Flow with the TRACE Code, 17th Int. Conf. on Nuclear Engineering (ICONE-17), Paper 75131, Brussels, Belgium.