PUBLICATIONS

[4] Pablo Martinez-Azcona, Aritra Kundu, Avadh Saxena, Adolfo del Campo, Aurélia Chenu
Quantum Dynamics with Stochastic Non-Hermitian Hamiltonians
https://arxiv.org/abs/2407.07746

[3] Niklas Hörnedal, Oskar A. Prośniak, Adolfo del Campo, Aurélia Chenu 
A geometrical description of non-Hermitian dynamics: speed limits in finite rank density operators
https://arxiv.org/abs/2405.13913

[2] Ruth Shir*, Pablo Martinez-Azcona*, Aurélia Chenu. ArXiv 2311.09292 Full range spectral correlations and their spectral form factors in chaotic and integrable models
https://arxiv.org/abs/2311.09292

[1] A. Chenu, A.M. Branczyk, and J.E. Sipe. Thermal States and Wave Packets. ArXiv:1609.00014. 

[41] Federico Roccati*, Federico Balducci*, Ruth Shir*, Aurélia Chenu. Phys. Rev. B 109:L140201 (2024)
Diagnosing non-Hermitian Many-body Localization and Quantum Chaos via Singular Value Decomposition
https://doi.org/10.1103/PhysRevB.109.L140201

[40] Federico Roccati, Miguel Bello, Zongping Gong, Masahito Ueda, Francesco Ciccarello, Aurélia Chenu, Angelo Carollo. Nat. Comm. 15:2400 (2024)

Hermitian and Non-Hermitian Topology from Photon-Mediated Interactions
https://doi.org/10.1038/s41467-024-46471-w

[39] Pablo Martinez-Azcona ↵, Aritra Kundu ↵, Adolfo del Campo ↵, Aurelia Chenu ↵. Phys. Rev. Letters 131:160202 (2023)
Stochastic Operator Variance: An Observable to Diagnose Noise and Scrambling
https://doi.org/10.1103/PhysRevLett.131.160202

[38] A. S. Matsoukas-Roubeas ↵, F. Roccati ↵, J. Cornelius ↵, Z. Xu ↵, A. Chenu ↵, and A. del Campo ↵. J. of High Energy Phys., JHEP01:060 (2023)
Non-Hermitian Hamiltonian Deformations in Quantum Mechanics
https://arxiv.org/abs/2211.05437

[37] P. Martinez-Azcona and A. Chenu. Quantum 6, 852 (2022).
Analyticity constraints bound the decay of the spectral form factor.
https://quantum-journal.org/papers/q-2022-11-03-852/

[36] J. Cornelius, Z. Xu, A. Saxena, A. Chenu, A. del Campo. Phys. Rev. Letters 128:190402 (2022)
Spectral Filtering Induced by Non-Hermitian Evolution with Balanced Gain and Loss: Enhancing Quantum Chaos 

https://doi.org/10.1103/PhysRevLett.128.190402

[35] S. Alipour, A. T. Rezakhani, A. Chenu, A. del Campo, and T. Ala-Nissila. Phys. Rev. A, 105:L040201 (2022)
Entropy-based formulation of thermodynamics in arbitrary quantum evolution
https://arxiv.org/abs/1912.01939

[34] A. Chenu, S.-Y. Shiau, C.-H. Chien, M. Combescot. Phys. Rev. B 105:035301 (2022) 
From hybrid polariton to dipolariton using non-hermitian Hamiltonians to handle particle lifetimes 
https://arxiv.org/abs/2112.08779 ↵ 

[33] A. Juan-Delgado and A. Chenu. Phys. Rev. A 104:022219 (2021).
First Law of Quantum Thermodynamics in a Driven Open Two-Level System.
https://arxiv.org/abs/2104.10691 ↵ 

[32] L. Dupays and A. Chenu. Quantum 5, 449 (2021).
Shortcuts to Squeezed Thermal states.
https://quantum-journal.org/papers/q-2021-05-01-449/

[31] Z. Xu, A. Chenu, T. Prosen, and A. del Campo. Phys. Rev. B 103:064309 (2021).
Thermofield Dynamics: Quantum Chaos versus Decoherence.
https://arxiv.org/abs/2008.06444

[30] L. Dupays, I. Egusquiza, A. del Campo, and A. Chenu. Phys. Rev. Res. 2:033178 (2020).
Superadiabatic thermalization of a quantum oscillator by engineered dephasing. 
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033178

[29]  S. Alipour∗, A. Chenu*, A. T. Rezakhani, and A. del Campo. Quantum 4:336 (2020).
Shortcuts to Adiabaticity in Driven Open Quantum Systems: Balanced Gain and Loss and Non-Markovian Evolution. 
https://quantum-journal.org/papers/q-2020-09-28-336/

[28] A. L. Tong, O. C. Fiebig, M. Nairat, D. Harris, M. Giansily, A. Chenu, J. N. Sturgis, and G. S. Schlau-Cohen. The J. of Phys. Chem. B 124:1460 (2020).

Comparison of the Energy Transfer Rates in Structural and Spectral Variants of the B800-850 Complex of Purple Bacteria. 
https://doi.org/10.1021/acs.jpcb.9b11899

[27] A. Chenu, J. Molina-Vilaplana, and A. del Campo, 2019. Quantum 3:127.

Work Statistics, Loschmidt Echo and Information Scrambling in Chaotic Quantum Systems. 
https://quantum-journal.org/papers/q-2019-03-04-127/

[26] S.-Y. Shiau, A. Chenu, and M. Combescot, 2019. New J. of Phys. 21:043041

Composite-boson signature of atomic dimers in the interference pattern of two condensates. 
https://iopscience-iop-org.libproxy.mit.edu/article/10.1088/1367-2630/ab0cc6

[25] Z. Xu, L. P. García-Pintos, A. Chenu, A. del Campo, 2019. Phys. Rev. Lett. 122:014103.
Extreme decoherence and quantum chaos. 
https://arxiv.org/abs/1810.02319

[24]  A. Chenu, S.-Y. Shiau, and M. Combescot, 2019. Phys. Rev. B 99:014302.
Two-level system coupled to phonons: full analytical solution. 
https://arxiv.org/abs/1812.09043

[23] P. Diao, S. Deng, F. Li, S. Yu, A. Chenu, A. del Campo, and H. Wu, 2018. New J. of Phys. 20:1005004.
Shortcuts to adiabaticity in Fermi gases. 
https://iopscience-iop-org.libproxy.mit.edu/article/10.1088/1367-2630/aae45e

[22] A. Chenu, I. L. Egusquiza, J. Molina-Vilaplana, and A. del Campo, 2018. Sci. Rep. 8:12634.
Quantum work statistics, Loschmidt echo and information scrambling. 
https://www-nature-com.libproxy.mit.edu/articles/s41598-018-30982-w

[21] S. Deng, A. Chenu, P. Diao, F. Li, S. Yu, I. Coulamy, A. del Campo, and H. Wu, 2018. Science Advances 4:eaar5909.

Superadiabatic quantum friction suppression in finite-time thermodynamics. 
https://www.science.org/doi/10.1126/sciadv.aar5909

[20] B. Shanahan, A. Chenu, N. Margolus, and A. del Campo, 2018. Phys. Rev. Lett. 120:070401.
Quantum Speed Limits Across the Quantum-to-Classical Transition. 
https://arxiv.org/abs/1710.07335

[19] J. I. Ogren, A. L. Tong, S. C. Gordon, A. Chenu , Y. Lu, R. E. Blankenship, J. Cao, and G. S. Schlau-Cohen, 2018. Chemical Science 9:3095.
Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2. 
http://dx.doi.org/10.1039/C7SC04814A

[18] A. Chenu and M. Combescot, 2017. Phys. Rev. A 95:062124.

Many-body formalism for thermally-excited wave-packets: a way to connect quantum to classical regime.
https://arxiv.org/abs/1703.03828

[17] A. Chenu, M. Beau, J. Cao, and A. del Campo, 2017. Phys. Rev. Lett. 118:140403.

Quantum Simulation of Generic Many-Body Open System Dynamics using Classical Noise. 
https://arxiv.org/abs/1608.01317

[16] A. Chenu and J. Cao, 2017. Phys. Rev. Lett. 118:013001.

Construction of Multi-Chromophoric Spectra from Monomer Data: Applications to Resonant Energy Transfer. 
https://arxiv.org/abs/1608.06943

[15] A. Chenu, N. Keren, Y. Paltiel, R. Nevo, Z. Reich, J. Cao, 2017. J. Phys. Chem. B 121:9196.
Light Adaptation in Phycobilisome antennas: Influence on the Rod Length and Structural Arrangement. 
http://dx.doi.org/10.1021/acs.jpcb.7b07781

[14] A.M. Branczyk, A. Chenu, and J.E.Sipe, 2017. J. Opt. Soc. Am. B34:1536.
Thermal Light as a Mixture of Sets of Pulses. 
https://arxiv.org/abs/1605.06518

[13] A. Chenu and P. Brumer, 2016. J. Chem. Phys. 114:044103.

Transform-Limited-Pulse Representation of Excitation with Natural Incoherent Light. 
https://arxiv.org/abs/1503.05557

[12] A. Chenu, A. M. Branczyk, G.D. Scholes, and J. E. Sipe, 2015. Phys. Rev. Lett. 114:213601.
Thermal Light cannot be represented as a Statistical Mixture of Single Pulses.
https://arxiv.org/abs/1409.1926

[11] A. Chenu, A.M. Branczyk, and J.E. Sipe, 2015.Phys. Rev. A91:063813.

First-order Decomposition of Thermal Light in terms of a Statistical Mixture of Single Pulses. 
https://arxiv.org/abs/1412.0017

[10] A. Chenu and G. D. Scholes, 2015. Annu. Rev. Phys. Chem. 66:69.
Coherence in Energy Transfer and Photosynthesis. 
http://dx.doi.org/10.1146/annurev-physchem-040214-121713

[9] A. Chenu, P. Malý, and T. Mancal, 2014. Chem. Phys. 439:100.

Dynamic Coherence in Excitonic Molecular Complexes under Various Excitation Conditions. 
https://arxiv.org/abs/1306.1693

[8] A. Chenu, N. Christensson, H. F. Kauffmann, and T. Mancal, 2013. Sci. Rep. 3:2029.
Enhancement of Vibronic and Ground-State Vibrational Coherences in 2D Spectra of Photo- synthetic Complexes.
https://www-nature-com.libproxy.mit.edu/articles/srep02029

[7] K. Sun, A. Chenu, J. Krepel, K. Mikityuk, and R. Chawla, 2013. Nucl. Technology 183:484 - 503.
Coupled 3-D Neutronics/thermal-hydraulics optimization study for improving the response of a 3600 MWth SFR core to an unprotected loss-of-flow accident. 

[6] D. Tenchine et al., 2013. Nucl. Eng. Des. 258:189-198.

International benchmark on the natural convection test in Phenix reactor. [5] A. Chenu, R. Adams, K. Mikityuk, and R. Chawla, 2012. Ann. Nucl. Energy 49:182-190.
Analysis of selected Phenix EOL tests with the FAST code system – Part I: Control-Rod-Shift experiments.

[4] A. Chenu, K. Mikityuk, and R. Chawla, 2012. Ann. Nucl. Energy 49:191-199.

Analysis of selected Phenix EOL tests with the FAST code system – Part II: Unprotected phase of the Natural Convection test. 

[3] A. Chenu, K. Mikityuk, and R. Chawla, 2011. Nucl. Eng. Des. 241:3893-3909.

Pressure drop modeling and comparisons with experiments for single- and two-phase sodium flow.

[2] K. Mikityuk, J. Krepel, S. Pelloni, A. Chenu, P. Petkevich, and R. Chawla, 2010. J. of Eng. for Gas Turbines and Power 132:102915.

FAST code system: review and recent developments and near-future plans. 

[1] A. Chenu, K. Mikityuk, and R. Chawla, 2009. Nucl. Eng. Des. 239:2417-2429.

TRACE simulation of sodium boiling in pin bundle experiments under loss-of-flow conditions.

[1] A. del Campo, A. Chenu, S. Deng, and H. Wu, 2019. Friction-free quantum machines in Thermodynamics in the quantum regime - Recent Progress and Outloo, Springer Int. Pub., eds.: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso
https://arxiv.org/abs/1804.00604 ↵ 

K. Mikityuk, A. Chenu and K. Sun, 2012. European patent No 11196149.2-2208.
https://patents.google.com/patent/EP2610875A1/en ↵ 

[1] A. Chenu, 2011.
Single- and Two-Phase Flow Modeling for Coupled Neutronics/Thermal-Hydraulics Transient Analysis of Advanced Sodium-Cooled Fast Reactors, EPFL PhD thesis, no 5172.
https://infoscience.epfl.ch/record/168639?ln=en ↵ 

[P10] K. Sun, A. Chenu, K. Mikityuk, J. Krepel, R. Chawla, 2012. An Optimization Study for Im- proving the Safety Characteristics of a 3600 MWth Sodium-cooled Fast Reactor via Coupled Neutronics / Thermal-Hydraulics Analysis, 21st International Conference Nuclear Energy for New Europe, Nominated best paper of the ENEN 6th PhD Event, Ljubljana, Slovenia.

[P9] A. Chenu, K. Mikityuk, R. Chawla, 2012. Analysis of Phenix Natural Convection Test with the TRACE Code, 12th Int. Congress on Advances in Nuclear Power Plants (ICAPP-12), Paper 12444, Chicago, Illinois, USA. 

[P8] K. Sun, A. Chenu, K. Mikityuk, J. Krepel, R. Chawla, 2012. Coupled 3D-Neutronics / Thermal-Hydraulics Analysis of an Unprotected Loss-of-Flow Accident for a 3600 MWth SFR Core. Advances in Reactor Physics (PHYSOR 2012), Knoxville, Tennessee, USA. 

[P7] A. Chenu, K. Mikityuk, R. Adams, R. Chawla, 2011. Analysis of Phenix Core Response to Inlet Sodium Temperature Increase During One of the EOL Tests, 14th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14), N14P443, Toronto, Canada. 

[P6] A. Chenu, K. Mikityuk, R. Chawla, 2011. TRACE analysis of selected ISPRA experiments on dryout in sodium two-phase flow, 11th Int. Congress on Advances in Nuclear Power Plants (ICAPP-11), Paper 11289, Nice, France. 

[P5] A. Chenu, K. Mikityuk, R. Chawla, 2010. Modelling of sodium boiling for coupled neutronic / thermal-hydraulic transient analysis of the Gen-IV SFR, European Nuclear Conference (ENC), Nominated best paper of the ENEN PhD Event, Barcelona, Spain. 

[P4] A. Chenu, K. Mikityuk, R. Chawla, 2010. A Coupled 3D Neutron Kinetics / Thermal-Hydraulics Model of the Generation IV Sodium-Cooled Fast Reactor, 10th Int. Congress on Advances in Nuclear Power Plants (ICAPP-10), Paper 10281, San Diego, California, USA. 

[P3] A. Chenu, K. Mikityuk, R. Chawla, 2010. Modeling of Friction Pressure Drop for Sodium Two-Phase Flow in Round Tubes, 10th Int. Congress on Advances in Nuclear Power Plants (ICAPP-10), Paper 10282, San Diego, California, USA. 

[P2] A. Chenu, K. Mikityuk, R. Chawla, 2009. One- and Two- dimensional Simulations of Sodium Boiling under Loss-of-flow Conditions in a Pin Bundle with the TRACE Code, 13th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13), N13P1108, Kanazawa, Japan.

[P1] A. Chenu, K. Mikityuk, R. Chawla, 2009. Modeling of Sodium Two-phase Flow with the TRACE Code, 17th Int. Conf. on Nuclear Engineering (ICONE-17), Paper 75131, Brussels, Belgium. 

Save
Cookies user preferences
We use cookies to ensure you to get the best experience on our website. If you decline the use of cookies, this website may not function as expected.
Accept all
Decline all
Essential cookies
These cookies are necessary for the operation of our Site and essential for you to navigate and use the features of our Site, such as accessing secure areas. These are mainly session cookies or login cookies.